Using the Relevance Vector Machine Model Combined with Local Phase Quantization to Predict Protein-Protein Interactions from Protein Sequences
نویسندگان
چکیده
We propose a novel computational method known as RVM-LPQ that combines the Relevance Vector Machine (RVM) model and Local Phase Quantization (LPQ) to predict PPIs from protein sequences. The main improvements are the results of representing protein sequences using the LPQ feature representation on a Position Specific Scoring Matrix (PSSM), reducing the influence of noise using a Principal Component Analysis (PCA), and using a Relevance Vector Machine (RVM) based classifier. We perform 5-fold cross-validation experiments on Yeast and Human datasets, and we achieve very high accuracies of 92.65% and 97.62%, respectively, which is significantly better than previous works. To further evaluate the proposed method, we compare it with the state-of-the-art support vector machine (SVM) classifier on the Yeast dataset. The experimental results demonstrate that our RVM-LPQ method is obviously better than the SVM-based method. The promising experimental results show the efficiency and simplicity of the proposed method, which can be an automatic decision support tool for future proteomics research.
منابع مشابه
Protein Secondary Structure Prediction: a Literature Review with Focus on Machine Learning Approaches
DNA sequence, containing all genetic traits is not a functional entity. Instead, it transfers to protein sequences by transcription and translation processes. This protein sequence takes on a 3D structure later, which is a functional unit and can manage biological interactions using the information encoded in DNA. Every life process one can figure is undertaken by proteins with specific functio...
متن کاملPrediction of Protein Sub-Mitochondria Locations Using Protein Interaction Networks
Background: Prediction of the protein localization is among the most important issues in the bioinformatics that is used for the prediction of the proteins in the cells and organelles such as mitochondria. In this study, several machine learning algorithms are applied for the prediction of the intracellular protein locations. These algorithms use the features extracted from pro...
متن کاملDetection of Interactions between Proteins through Rotation Forest and Local Phase Quantization Descriptors
Protein-Protein Interactions (PPIs) play a vital role in most cellular processes. Although many efforts have been devoted to detecting protein interactions by high-throughput experiments, these methods are obviously expensive and tedious. Targeting these inevitable disadvantages, this study develops a novel computational method to predict PPIs using information on protein sequences, which is hi...
متن کاملPCVMZM: Using the Probabilistic Classification Vector Machines Model Combined with a Zernike Moments Descriptor to Predict Protein–Protein Interactions from Protein Sequences
Protein-protein interactions (PPIs) are essential for most living organisms' process. Thus, detecting PPIs is extremely important to understand the molecular mechanisms of biological systems. Although many PPIs data have been generated by high-throughput technologies for a variety of organisms, the whole interatom is still far from complete. In addition, the high-throughput technologies for det...
متن کاملRVMAB: Using the Relevance Vector Machine Model Combined with Average Blocks to Predict the Interactions of Proteins from Protein Sequences
Protein-Protein Interactions (PPIs) play essential roles in most cellular processes. Knowledge of PPIs is becoming increasingly more important, which has prompted the development of technologies that are capable of discovering large-scale PPIs. Although many high-throughput biological technologies have been proposed to detect PPIs, there are unavoidable shortcomings, including cost, time intens...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016